Matroid theory and Tutte polynomial

J.L. Ramírez Alfonsín

IMAG, Université de Montpellier

CombinatoireS,

 Summer School,Paris, June 29 - July 32015

Independents

A matroid M is an ordered pair (E, \mathcal{I}) where E is a finite set $(E=\{1, \ldots, n\})$ and \mathcal{I} is a family of subsets of E verifying the following conditions:
(I1) $\emptyset \in \mathcal{I}$,
(I2) If $I \in \mathcal{I}$ and $I^{\prime} \subset I$ then $I^{\prime} \in \mathcal{I}$,
(I3) If $I_{1}, I_{2} \in \mathcal{I}$ and $\left|I_{1}\right|<\left|I_{2}\right|$ then there exists $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.
The members in \mathcal{I} are called the independents of M. A subset in E not belonging to \mathcal{I} is called dependent.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof : (I1) et (I2) are trivial.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.
On one hand, $\operatorname{dim}(W) \geq\left|I_{2}\right|$,

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.
On one hand, $\operatorname{dim}(W) \geq\left|I_{2}\right|$, on the other hand W is contained in the space generated by I_{1}.

Representable Matroids

Theorem (Whitney 1935) Let $\left\{e_{1}, \ldots, e_{n}\right\}$ a set of columns (vectors) of a matrix with coefficients in a field \mathbb{F}. Let \mathcal{I} be the family of subsets $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}=E$ such that the columns $\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$ are linearly independent in \mathbb{F}. Then, (E, \mathcal{I}) is a matroid.
Proof: (I1) et (I2) are trivial.
(I3)] Let $I_{1}^{\prime}, I_{2}^{\prime} \in \mathcal{I}$ such that the corresponding columns, say I_{1} et I_{2}, are linearly independent with $\left|I_{1}\right|<\left|I_{2}\right|$.
By contradiction, suppose that $I_{1} \cup e$ is linearly dependent for any $e \in I_{2} \backslash I_{1}$. Let W the space generated by I_{1} and I_{2}.
On one hand, $\operatorname{dim}(W) \geq\left|I_{2}\right|$, on the other hand W is contained in the space generated by I_{1}.

$$
\left|I_{2}\right| \leq \operatorname{dim}(W) \leq\left|I_{1}\right|<\left|I_{2}\right| \quad!!!
$$

Representable Matroids

Let A be the following matrix with coefficients in \mathbb{R}.

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\{\emptyset,\{1\},\{2\},\{4\},\{4\},\{5\},\{1,2\},\{1,5\},\{2,4\},\{2,5\},\{4,5\}\} \subseteq \mathcal{I}(M)$

A matroid obtained form a matrix A with coefficients in \mathbb{F} is denoted by $M(A)$ and is called representable over \mathbb{F} or \mathbb{F}-representable.

Circuits

A subset $X \subseteq E$ is said to be minimal dependent if any proper subset of X is independent. A minimal dependent set of matroid M is called circuit of M.
We denote by \mathcal{C} the set of circuits of a matroid.

Circuits

A subset $X \subseteq E$ is said to be minimal dependent if any proper subset of X is independent. A minimal dependent set of matroid M is called circuit of M.
We denote by \mathcal{C} the set of circuits of a matroid.
\mathcal{C} is the set of circuits of a matrid on E if and only if \mathcal{C} verifies the following properties:
(C1) $\emptyset \notin \mathcal{C}$,
(C2) $C_{1}, C_{2} \in \mathcal{C}$ and $C_{1} \subseteq C_{2}$ then $C_{1}=C_{2}$,
(C3) (elimination property) If $C_{1}, C_{2} \in \mathcal{C}, C_{1} \neq C_{2}$ and $e \in C_{1} \cap C_{2}$ then there exists $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left\{C_{1} \cup C_{2}\right\} \backslash\{e\}$.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.
This matroid is denoted by $M(G)$ and called graphic.

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.
This matroid is denoted by $M(G)$ and called graphic.
Proof : Verify (C1), (C2) and (C3).

Graphic Matroid

Let $G=(V, E)$ be a graph. A cycle in G is a closed walk without repeated vertices.

Theorem The set of cycles in a graph $G=(V, E)$ is the set of circuits of a matroid on E.

This matroid is denoted by $M(G)$ and called graphic.
Proof: Verify (C1), (C2) and (C3).
A subset of edges $I \subset\left\{e_{1}, \ldots, e_{n}\right\}$ of G is independent if the graph induced by I does not contain a cycle.

Graphic Matroid

Graphic Matroid

It can be checked that $M(G)$ is isomorphic to $M(A)$ (under the bijection $e_{i} \rightarrow i$).

$$
A=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Graphic Matroid

Theorem A graphic matroid is always representable over \mathbb{R}.

Graphic Matroid

Theorem A graphic matroid is always representable over \mathbb{R}. Proof (idea) Let $G=(V, E)$ be an oriented graph and let $\left\{x_{i}, i \in V\right\}$ be the canonical base of $\mathbb{R}^{|V|}$.

Graphic Matroid

Theorem A graphic matroid is always representable over \mathbb{R}. Proof (idea) Let $G=(V, E)$ be an oriented graph and let $\left\{x_{i}, i \in V\right\}$ be the canonical base of $\mathbb{R}^{|V|}$.

Exercice : Verify that the graph $G=(V, E)$ gives the same matroid that the one given by the set of vectors $y_{e}=x_{i}-x_{j}$ where $e=(i, j) \in E$.

Graphic Matroid

$$
A=\left(\begin{array}{rrrr}
y_{a} & y_{b} & y_{c} & y_{d} \\
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

Graphic Matroid

$$
A=\left(\begin{array}{rrrr}
y_{a} & y_{b} & y_{c} & y_{d} \\
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$M(G)$ is isomorphic to $M(A)\left(a \rightarrow y_{a}, b \rightarrow y_{b}, c \rightarrow y_{c}, d \rightarrow y_{d}\right)$.

Graphic Matroid

$$
A=\left(\begin{array}{rrrr}
y_{a} & y_{b} & y_{c} & y_{d} \\
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$M(G)$ is isomorphic to $M(A)\left(a \rightarrow y_{a}, b \rightarrow y_{b}, c \rightarrow y_{c}, d \rightarrow y_{d}\right)$.
The cycle formed by the edges $a=\{1,2\}, b=\{1,3\}$ et $c=\{2,3\}$ in the graph correspond to the linear dependency $y_{b}-y_{a}=y_{c}$.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.
Proof : exercices.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.
Proof: exercices.
The family \mathcal{B} verifies the following conditions:
(B1) $\mathcal{B} \neq \emptyset$,
(B2) (exchange propety) $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \backslash B_{2}$ then there exist $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash x\right) \cup y \in \mathcal{B}$.

Bases

A base of a matroid is a maximal independent set. We denote by \mathcal{B} the set of all bases of a matroid.
Lemma The bases of a matroid have the same cardinality.
Proof : exercices.
The family \mathcal{B} verifies the following conditions:
(B1) $\mathcal{B} \neq \emptyset$,
(B2) (exchange propety) $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \backslash B_{2}$ then there exist $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash x\right) \cup y \in \mathcal{B}$.

If \mathcal{I} is the family of subsets contained in a set of \mathcal{B} then (E, \mathcal{I}) is a matroid.

Bases

Theorem \mathcal{B} is the set of basis of a matroid if and only if it verifies $(B 1)$ and (B2).

Bases

Theorem \mathcal{B} is the set of basis of a matroid if and only if it verifies (B1) and (B2).

Bases

Bases

Bases

Bases

Bases

Rank

The rank of a set $X \subseteq E$ is defined by

$$
r_{M}(X)=\max \{|Y|: Y \subseteq X, Y \in \mathcal{I}\}
$$

Rank

The rank of a set $X \subseteq E$ is defined by

$$
r_{M}(X)=\max \{|Y|: Y \subseteq X, Y \in \mathcal{I}\}
$$

$r=r_{M}$ is the rank function of a matroid (E, \mathcal{I}) (where
$\mathcal{I}=\{I \subseteq E: r(I)=|I|\})$ if and only if r verifies the following conditions:
(R1) $0 \leq r(X) \leq|X|$, for all $X \subseteq E$,
$(R 2) r(X) \leq r(Y)$, for all $X \subseteq Y$,
(R3) (sub-modulairity) $r(X \cup Y)+r(X \cap Y) \leq r(X)+r(Y)$ for all $X, Y \subset E$.

Rank

Let M be a graphic matroid obtained from G

Rank

Let M be a graphic matroid obtained from G

It can be verified that:

$$
\begin{aligned}
& r_{M}(\{a, b, c\})=r_{M}(\{c, d\})=r_{M}(\{a, d\})=2 \text { et } \\
& r(M(G))=r_{M}(\{a, b, c, d\})=3 .
\end{aligned}
$$

Duality

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\}
$$

is the set of bases of a matroid on E.

Duality

Let M be a matroid on the ground set E and let \mathcal{B} the set of bases of M. Then,

$$
\mathcal{B}^{*}=\{E \backslash B \mid B \in \mathcal{B}\}
$$

is the set of bases of a matroid on E.
The matroid on E having \mathcal{B}^{*} as set of bases, denoted by M^{*}, is called the dual of M.
A base of M^{*} is also called cobase of M.

Duality

We have that

- $r\left(M^{*}\right)=|E|-r_{M}$ and $M^{* *}=M$.

Duality

We have that

- $r\left(M^{*}\right)=|E|-r_{M}$ and $M^{* *}=M$.
- The set \mathcal{I}^{*} of independents of M^{*} is given by
$\mathcal{I}^{*}=\{X \mid X \subset E$ such that there exists $B \in \mathcal{B}(M)$ with $X \cap B=\emptyset\}$.

Duality

We have that

- $r\left(M^{*}\right)=|E|-r_{M}$ and $M^{* *}=M$.
- The set \mathcal{I}^{*} of independents of M^{*} is given by
$\mathcal{I}^{*}=\{X \mid X \subset E$ such that there exists $B \in \mathcal{B}(M)$ with $X \cap B=\emptyset\}$.
- The rank function of M^{*} is given by

$$
r_{M^{*}}(X)=|X|+r_{M}(E \backslash X)-r_{M}
$$

for $X \subset E$.

Cocycle Matroid

Let $G=(V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.

Cocycle Matroid

Let $G=(V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.
Theorem Let $\mathcal{C}(G)^{*}$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^{*}$ is the set of circuits of a matroid on E.

Cocycle Matroid

Let $G=(V, E)$ be a graph. A cocycle (or cut) of G is the set of edges joining the two parts of a partition of the set of vertices of the graph.
Theorem Let $\mathcal{C}(G)^{*}$ be the set of minimal (by inclusion) cocycles of a graph G. Then, $\mathcal{C}(G)^{*}$ is the set of circuits of a matroid on E. The matroid obtained on this way is called the matroid of cocycle of G or bond matroid, denoted by $B(G)$.

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$$
\mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}
$$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$$
\begin{aligned}
& \mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\} \\
& \mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\}
\end{aligned}
$$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$$
\begin{aligned}
& \mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\} \\
& \mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\} \\
& \mathcal{I}\left(M^{*}(G)\right)=\{\emptyset,\{1\},\{2\},\{3\}\}
\end{aligned}
$$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$\mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$
$\mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\}$
$\mathcal{I}\left(M^{*}(G)\right)=\{\emptyset,\{1\},\{2\},\{3\}\}$
The dependents of $M^{*}(G)$ are $\mathcal{P}(\{1,2,3,4\}) \backslash\{\emptyset,\{1\},\{2\},\{3\}\}$

Bond Matroid

Theorem $M^{*}(G)=B(G)$ and $M(G)=B^{*}(G)$.

$\mathcal{B}(M(G))=\{\{4,1,3\},\{4,1,2\},\{4,2,3\}\}$
$\mathcal{B}\left(M^{*}(G)\right)=\{\{2\},\{3\},\{1\}\}$
$\mathcal{I}\left(M^{*}(G)\right)=\{\emptyset,\{1\},\{2\},\{3\}\}$
The dependents of $M^{*}(G)$ are $\mathcal{P}(\{1,2,3,4\}) \backslash\{\emptyset,\{1\},\{2\},\{3\}\}$ $\mathcal{C}\left(M^{*}(G)\right)=\{\{4\},\{1,2\},\{1,3\},\{2,3\}\}$ that are precisely the cocycles of G.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Planarity

Theorem If G is planar then $M^{*}(G)=M\left(G^{*}\right)$.

Remark The dual of a graphic matroid is not necessarly graphic.

Duality - representable matroid

Theorem The dual of a \mathbb{F}-representable matroid is \mathbb{F}-representable.

Duality - representable matroid

Theorem The dual of a \mathbb{F}-representable matroid is \mathbb{F}-representable. Proof. The matrix representing M can always be written as
$\left(I_{r} \mid A\right)$
where I_{r} is the identity $r \times r$ and A is a matrix of size $r \times(n-r)$.

Duality - representable matroid

Theorem The dual of a \mathbb{F}-representable matroid is \mathbb{F}-representable. Proof. The matrix representing M can always be written as

$$
\left(I_{r} \mid A\right)
$$

where I_{r} is the identity $r \times r$ and A is a matrix of size $r \times(n-r)$.
(Exercise) M^{*} can be obtained from the set of columns of the matrix

$$
\left(-{ }^{t} A \mid I_{n-r}\right)
$$

where I_{n-r} is the identity $(n-r) \times(n-r)$ and ${ }^{t} A$ is the transpose of A.

Duality - representable matroid

The matroid M^{*} is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.

Duality - representable matroid

The matroid M^{*} is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.
Let V be a subspace of \mathbb{F}^{n} where $n=|E|$. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v\rangle=\sum_{e \in E} u(e) v(e)$ by

$$
V^{\perp}=\left\{v \in \mathbb{F}^{n} \mid\langle u, v\rangle=0 \text { for any } u \in V\right\} .
$$

Duality - representable matroid

The matroid M^{*} is also called the orthogonal matroid of M since the duality for representable matroids is a generalization of the notion of orthogonality in vector spaces.
Let V be a subspace of \mathbb{F}^{n} where $n=|E|$. We recall that the orthogonal space V^{\perp} is defined from the canonical scalar product $\langle u, v\rangle=\sum_{e \in E} u(e) v(e)$ by

$$
V^{\perp}=\left\{v \in \mathbb{F}^{n} \mid\langle u, v\rangle=0 \text { for any } u \in V\right\} .
$$

The orthogonal space of the space generated by the columns of $(I \mid A)$ is given by the space generated by the columns of $\left(-{ }^{t} A \mid I_{n-r}\right)$.

Operation : deletion

Let M be a matroid on the set E and let $A \subset E$. Then,

$$
\{X \subset E \backslash A \mid X \text { is independent in } M\}
$$

is a set of independent of a matroid on $E \backslash A$.

Operation : deletion

Let M be a matroid on the set E and let $A \subset E$. Then,

$$
\{X \subset E \backslash A \mid X \text { is independent in } M\}
$$

is a set of independent of a matroid on $E \backslash A$.
This matroid is obtained from M by deleting the elements of A and it is denoted by $M \backslash A$.

Operation : contraction

Let M be a matroid on the set E and let $A \subset E$. Let $\left.M\right|_{A}=\{X \subseteq A \mid X \in \mathcal{I}(M)\}$ and $X \subseteq E \backslash A$. Then,
$\left\{X \subseteq E \backslash A \mid\right.$ there exists a base B of $\left.M\right|_{A}$ such that $\left.X \cup B \in \mathcal{I}(M)\right\}$ is the set of independents of a matroid in $E \backslash A$.

Operation : contraction

Let M be a matroid on the set E and let $A \subset E$. Let $\left.M\right|_{A}=\{X \subseteq A \mid X \in \mathcal{I}(M)\}$ and $X \subseteq E \backslash A$. Then,
$\left\{X \subseteq E \backslash A \mid\right.$ there exists a base B of $\left.M\right|_{A}$ such that $\left.X \cup B \in \mathcal{I}(M)\right\}$
is the set of independents of a matroid in $E \backslash A$.
This matroid is obtained from M by contracting the elements of A and it is denoted by M / A.

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

and thus $M / A=\left(M^{*} \backslash A\right)^{*}$

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

and thus $M / A=\left(M^{*} \backslash A\right)^{*}$
A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Operations : deletion and contraction

Properties

(i) $(M \backslash A) \backslash A^{\prime}=M \backslash\left(A \cup A^{\prime}\right)$
(ii) $(M / A) / A^{\prime}=M /\left(A \cup A^{\prime}\right)$
(iii) $(M \backslash A) / A^{\prime}=\left(M / A^{\prime}\right) \backslash A$

The operations deletion and contraction are duals, that is,

$$
(M \backslash A)^{*}=\left(M^{*}\right) / A \text { and }(M / A)^{*}=\left(M^{*}\right) \backslash A
$$

and thus $M / A=\left(M^{*} \backslash A\right)^{*}$
A minor of a matroid of M is any matroid obtained by a sequence of deletions and contractions.

Question: Is it true that any family of matroids is closed under deletions/contractions operations?

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform.

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform.
Proof Deletion : let $T \subseteq E$ with $|T|=t$. Then,

$$
U_{n, r} \backslash T= \begin{cases}U_{n-t, n-t} & \text { if } n \geq t \geq n-r \\ U_{n-t, r} & \text { if } t<n-r .\end{cases}
$$

Minors - uniform matroids

The uniform matroid (denoted by $U_{n, r}$) is the matroid on E with $|E|=n$ elements where

$$
\mathcal{B}\left(U_{n, r}\right)=\{X \subset E:|X|=r\}
$$

Proposition Any minor of a uniform matroid is uniform.
Proof Deletion : let $T \subseteq E$ with $|T|=t$. Then,

$$
U_{n, r} \backslash T= \begin{cases}U_{n-t, n-t} & \text { if } n \geq t \geq n-r \\ U_{n-t, r} & \text { if } t<n-r .\end{cases}
$$

Contraction : it follows by using duality.

Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.

Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions and contractions.

Contracting element 6

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.
Contracting: M / a is the matroid obtained from the vectors $\left(v_{e}^{\prime}\right)_{e \in E \backslash a}$ where v_{e}^{\prime} is the vector obtained from v_{e} by deleting the non zero entry of v_{a}.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.
Contracting : M / a is the matroid obtained from the vectors $\left(v_{e}^{\prime}\right)_{e \in E \backslash a}$ where v_{e}^{\prime} is the vector obtained from v_{e} by deleting the non zero entry of v_{a}.

- If we change the nonzero component we obtain another representation of M / a.

Minors - representable matroids

Proposition The class of representable matroids over a field \mathbb{F} is closed under deletions and contractions.
Let M be a matroid obtained from the vectors $\left(v_{e}\right)_{e \in E}$ of \mathbb{F}^{d}. Deleting : $M \backslash a$ is the matroid obtained from the vectors $\left(v_{e}\right)_{e \in E \backslash a}$
Remark: Lines sums and scalar multiplications do not change the associated matroid. So, if $v_{a} \neq \overline{0}$ then we suppose that v_{a} is the unit vector.
Contracting : M / a is the matroid obtained from the vectors $\left(v_{e}^{\prime}\right)_{e \in E \backslash a}$ where v_{e}^{\prime} is the vector obtained from v_{e} by deleting the non zero entry of v_{a}.

- If we change the nonzero component we obtain another representation of M / a.
- If $v_{a}=\overline{0}$ then a is a loop of M and thus $M / a=M \backslash a$.

Minors - representable matroids

Excluded Minors

For any field \mathbb{F}, there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F}.

Excluded Minors

For any field \mathbb{F}, there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F}.
Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representables over \mathbb{F}.

Excluded Minors

For any field \mathbb{F}, there exists a list of excluded minors, that is, nonrepresentable matroids over \mathbb{F} but any of its proper minors is representable over \mathbb{F}.
Determining the list of excluded minors over \mathbb{F} gives a characterization of the matroids representables over \mathbb{F}.
For $\mathbb{F}=G F(2)=\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ (binary matroids) : the list has only one matroid $U_{2,4}$ (3 pages proof)

$$
\mathcal{B}\left(U_{2,4}\right)=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}
$$

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)
Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)=B\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)=B\left(K_{3,3}\right)$ as minors.

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)
Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)=B\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)=B\left(K_{3,3}\right)$ as minors.
Theorem A matroid is cographic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M\left(K_{5}\right)$ nor $M\left(K_{3,3}\right)$ as minors.

Excluded Minors

For $\mathbb{F}=G F(3)=\mathbb{Z}_{3}=\mathbb{Z} / 3 \mathbb{Z}$ (ternary matroids) : the list has 4 matroids $F_{7} F_{7}^{*}, U_{2,5} U_{3,5}$ (10 pages proof)
For $\mathbb{F}=G F(4)$: the list has 8 matroids explicitly given (50 pages proof)
Theorem A matroid is graphic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)=B\left(K_{5}\right)$ nor $M^{*}\left(K_{3,3}\right)=B\left(K_{3,3}\right)$ as minors.
Theorem A matroid is cographic if and only if has neither $U_{2,4}, F_{7}, F_{7}^{*}, M\left(K_{5}\right)$ nor $M\left(K_{3,3}\right)$ as minors.
Theorem A matroid is regular if and only if has neither $U_{2,4}, F_{7}$ nor F_{7}^{*} as minors.

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)} .
$$

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}
$$

Let $U_{2,3}$ be the matroid of rank 2 on 3 elements with $\mathcal{B}\left(U_{2,3}\right)=\{\{1,2\},\{1,3\},\{2,3\}\}$

Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function defined as follows

$$
t(M ; x, y)=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{|X|-r(X)}
$$

Let $U_{2,3}$ be the matroid of rank 2 on 3 elements with $\mathcal{B}\left(U_{2,3}\right)=\{\{1,2\},\{1,3\},\{2,3\}\}$

$$
\begin{aligned}
t\left(U_{2,3} ; x, y\right) & =\sum_{X \subseteq E,|X|=0}(x-1)^{2-0}(y-1)^{0-0}+\sum_{X \subseteq E,|X|=1}(x-1)^{2-1}(y-1)^{1-1} \\
& +\sum_{x \subseteq E,|X|=2}(x-1)^{2-2}(y-1)^{2-2}+\sum_{x \subseteq E,|X|=3}(x-1)^{2-2}(y-1)^{3-2} \\
& =(x-1)^{2}+3(x-1)+3(1)+y-1 \\
& =x^{2}-2 x+1+3 x-3+3+y-1=x^{2}+x+y .
\end{aligned}
$$

Tutte Polynomial

A loop of a matroid M is a circuit of cardinality one. An isthmus of M is an element that is contained in all the bases.

Tutte Polynomial

A loop of a matroid M is a circuit of cardinality one. An isthmus of M is an element that is contained in all the bases.

The Tutte polynomial can be expressed recursively as follows
$t(M ; x, y)= \begin{cases}t(M \backslash e ; x, y)+t(M / e ; x, y) & \text { if } e \neq \text { isthmus, loop, } \\ x \cdot t(M \backslash e ; x, y) & \text { if } e \text { is an isthmus, } \\ y \cdot t(M / e ; x, y) & \text { if } e \text { is a loop. }\end{cases}$

Acyclic Orientations

Let $G=(V, E)$ be a connected graph. An orientation of G is an orientation of the edges of G.
We say that the orientation is acyclic if the oriented graph do not contain an oriented cycle (i.e., a cycle where all its edges are oriented clockwise or anti-clockwise).

Acyclic Orientations

Let $G=(V, E)$ be a connected graph. An orientation of G is an orientation of the edges of G.
We say that the orientation is acyclic if the oriented graph do not contain an oriented cycle (i.e., a cycle where all its edges are oriented clockwise or anti-clockwise).
Theorem The number of acyclic orientations of G is equals to

$$
t(M(G) ; 2,0)
$$

Acyclic Orientations

Example : There are 6 acyclic orientations of C_{3}

Notice that $M\left(C_{3}\right)$ is isomorphic to $U_{2,3}$.

Acyclic Orientations

Example : There are 6 acyclic orientations of C_{3}

Notice that $M\left(C_{3}\right)$ is isomorphic to $U_{2,3}$.
Since $t\left(U_{2,3} ; x, y\right)=x^{2}+x+y$ then the number of acyclic orientations of C_{3} is $t\left(U_{2,3} ; 2,0\right)=2^{2}+2+0=6$.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer. A λ-coloring of G is a map $\phi: V \longrightarrow\{1, \ldots, \lambda\}$.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer. A λ-coloring of G is a map $\phi: V \longrightarrow\{1, \ldots, \lambda\}$.

The coloring is called good if for any edge $\{u, v\} \in E(G)$, $\phi(u) \neq \phi(v)$.

Chromatic Polynomial

Let $G=(V, E)$ be a graph and let λ be a positive integer. A λ-coloring of G is a map $\phi: V \longrightarrow\{1, \ldots, \lambda\}$.

The coloring is called good if for any edge $\{u, v\} \in E(G)$, $\phi(u) \neq \phi(v)$.

Chromatic Polynomial

Let $\chi(G, \lambda)$ be the number of good λ-colorings of G.

Chromatic Polynomial

Let $\chi(G, \lambda)$ be the number of good λ-colorings of G.
Theorem $\chi(G, \lambda)$ is a polynomial on λ. Moreover

$$
\chi(G, \lambda)=\sum_{X \subseteq E}(-1)^{|X|} \lambda^{\omega(G[X])}
$$

where $\omega(G[X])$ denote the number of connected components of the subgraph generated by X.

Proof (idea) By using the inclusion-exclusion formula.

Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4)>0$ then G admits a good 4-coloring.

Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4)>0$ then G admits a good 4-coloring.

Theorem If G is a graph with $\omega(G)$ connected components. Then,

$$
\chi(G, \lambda)=\lambda^{\omega(G)}(-1)^{|V(G)|-\omega(G)} t(M(G) ; 1-\lambda, 0) .
$$

Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a tool to attack the 4-color problem.

Indeed, if for a planar graph G we have $\chi(G, 4)>0$ then G admits a good 4-coloring.

Theorem If G is a graph with $\omega(G)$ connected components. Then,

$$
\chi(G, \lambda)=\lambda^{\omega(G)}(-1)^{|V(G)|-\omega(G)} t(M(G) ; 1-\lambda, 0) .
$$

Exemple: $\chi\left(K_{3}, 3\right)=3^{1}(-1)^{3-1} t\left(K_{3} ; 1-3,0\right)$

$$
=3 \cdot 1 \cdot t\left(U_{2,3} ;-2,0\right)=3\left((-2)^{2}-2+0\right)=6
$$

Ehrhart Polynomial

The theory of Ehrhart focuses in counting the number of points with integer coordinates lying in a polytope.

Ehrhart Polynomial

The theory of Ehrhart focuses in counting the number of points with integer coordinates lying in a polytope.
A polytope is called integer if all its vertices have integer coordinates.
Ehrhart studied the function i_{P} that counts the number of integer points in the polytope P dilated by a factor of t

$$
\begin{aligned}
i_{P}: & \mathbb{N} \longrightarrow \mathbb{N}^{*} \\
& t \mapsto\left|t P \cap \mathbb{Z}^{d}\right|
\end{aligned}
$$

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),
- c_{d-1} is equals to $\operatorname{Vol}(\partial(P) / 2)$ where $\partial(P)$ is the surface of P,

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),
- c_{d-1} is equals to $\operatorname{Vol}(\partial(P) / 2)$ where $\partial(P)$ is the surface of P,
- $c_{0}=1$ is the Euler's characteristic of P.

Ehrhart Polynomial

Theorem (Ehrhart) i_{P} is a polynomial on t of degree d,

$$
i_{P}(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{1} t+c_{0}
$$

- c_{d} is equals to $\operatorname{Vol}(P)$ (the volume of P),
- c_{d-1} is equals to $\operatorname{Vol}(\partial(P) / 2)$ where $\partial(P)$ is the surface of P,
- $c_{0}=1$ is the Euler's characteristic of P.

All others coefficients remain a mystery!!

Ehrhart Polynomial

The Minkowski's sum of two sets A and B of \mathbb{R}^{d} is

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

Ehrhart Polynomial

The Minkowski's sum of two sets A and B of \mathbb{R}^{d} is

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

Let $A=\left\{v_{1}, \ldots, v_{k}\right\}$ be a finite set of elements of \mathbb{R}^{d}.
A zonotope generated by A, denoted by $Z(A)$, is a polytope formed by the Minkowski's sum of line segments

$$
Z(A)=\left\{\alpha_{1}+\cdots+\alpha_{k} \mid \alpha_{i} \in\left[-v_{i}, v_{i}\right]\right\} .
$$

Ehrhart Polynomial

Ehrhart Polynomial

Permutahedron

Ehrhart Polynomial

A matroid is regular if it is representable over any field.

Ehrhart Polynomial

A matroid is regular if it is representable over any field.
Theorem Let M be a regular matroid and let A be one of its representation matrix. Then, the Ehrhart polynomial associated to the zonotope $Z(A)$ is given by

$$
i_{Z(A)}(q)=q^{r(M)} t\left(M ; 1+\frac{1}{q}, 1\right) .
$$

Knots

Knots

Reidemeister moves

Knots

Knots

Knots

Knots

Bracket polynomial

For any link diagram D define a Laurent polynomial $\langle D>$ in one variable A which obeys the following three rules where U denotes the unknot :

Knots

Bracket polynomial

For any link diagram D define a Laurent polynomial $\langle D>$ in one variable A which obeys the following three rules where U denotes the unknot:

$$
\begin{aligned}
& \text { i) }\langle U\rangle=1 \\
& \text { ii) }\langle U+D\rangle=-\left(A^{2}+A^{-2}\right)\langle D\rangle \\
& \text { iii) }\rangle\rangle=A\left\langle\backsim A^{-1}\langle \rangle\langle \rangle\right.
\end{aligned}
$$

Knots

Theorem For any link L the bracket polynomial is independent of the order in which rules (i) - (iii) are applied to the crossings. Further, it is invariant under the Reidemeister moves II and III but it is not invariant under Reidemeister move I! !

Knots

Theorem For any link L the bracket polynomial is independent of the order in which rules (i) - (iii) are applied to the crossings. Further, it is invariant under the Reidemeister moves II and III but it is not invariant under Reidemeister move I!!
The writhe of an oriented link diagram D is the sum of the signs at the crossings of D (denoted by $\omega(D)$).

Knots

Knots

Theorem For any link L define the Laurent polynomial

$$
f_{D}(A)=\left(-A^{3}\right)^{\omega(D)}<L>
$$

Then, $f_{D}(A)$ is an invariant of ambient isotopy.

Knots

Theorem For any link L define the Laurent polynomial

$$
f_{D}(A)=\left(-A^{3}\right)^{\omega(D)}<L>
$$

Then, $f_{D}(A)$ is an invariant of ambient isotopy.
Now, define for any link L

$$
V_{L}(z)=f_{D}\left(z^{-1 / 4}\right)
$$

where D is any diagram representing L. Then $V_{L}(z)$ is the Jones polynomial of the oriented link L.

Knots

Knots

Knots

Knots

$+$

Knots

A link diagram is alternating if the crossings alternate under-over-under-over ... as the link is traversed.

Knots

A link diagram is alternating if the crossings alternate under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram representing L.

Knots

A link diagram is alternating if the crossings alternate under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link diagram then

$$
V_{L}(z)=\left(z^{-1 / 4}\right)^{3 \omega(D)-2} t\left(M(G) ;-z,-z^{-1}\right)
$$

where G is the graph associated to the knot diagram.

More applications

- Code theory
- Flow polynomial
- Bicycle space of a graph
- Statistical mechanics
- Arrangements of hyperplanes

