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Independents

A matroid M is an ordered pair (E , I) where E is a finite set
(E = {1, . . . , n}) and I is a family of subsets of E verifying the
following conditions :

(I1) ∅ ∈ I,

(I2) If I ∈ I and I ′ ⊂ I then I ′ ∈ I,

(I3) If I1, I2 ∈ I and |I1| < |I2| then there exists e ∈ I2\I1 such that
I1 ∪ e ∈ I.

The members in I are called the independents of M. A subset in E
not belonging to I is called dependent.
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Representable Matroids

Theorem (Whitney 1935) Let {e1, . . . , en} a set of columns
(vectors) of a matrix with coefficients in a field F. Let I be the
family of subsets {i1, . . . , im} ⊆ {1, . . . , n} = E such that the
columns {ei1 , . . . , eim} are linearly independent in F. Then, (E , I)
is a matroid.

Proof : (I1) et (I2) are trivial.
(I3)] Let I ′1, I

′
2 ∈ I such that the corresponding columns, say I1 et

I2, are linearly independent with |I1| < |I2|.
By contradiction, suppose that I1 ∪ e is linearly dependent for any
e ∈ I2\I1. Let W the space generated by I1 and I2.
On one hand, dim(W ) ≥ |I2|, on the other hand W is contained in
the space generated by I1.

|I2| ≤ dim(W ) ≤ |I1| < |I2| !!!
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Representable Matroids

Let A be the following matrix with coefficients in R.

A =
1 2 3 4 5(
1 0 0 1 1
0 1 0 0 1

)
{∅, {1}, {2}, {4}, {4}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}} ⊆ I(M)

A matroid obtained form a matrix A with coefficients in F is
denoted by M(A) and is called representable over F or
F-representable.
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Circuits

A subset X ⊆ E is said to be minimal dependent if any proper
subset of X is independent. A minimal dependent set of matroid
M is called circuit of M.
We denote by C the set of circuits of a matroid.

C is the set of circuits of a matrid on E if and only if C verifies the
following properties :

(C1) ∅ 6∈ C,

(C2) C1,C2 ∈ C and C1 ⊆ C2 then C1 = C2,

(C3) (elimination property) If C1,C2 ∈ C,C1 6= C2 and e ∈ C1 ∩ C2

then there exists C3 ∈ C such that C3 ⊆ {C1 ∪ C2}\{e}.

J.L. Raḿırez Alfonśın IIMAG, Université de Montpellier

Matroid theory and Tutte polynomial



Circuits

A subset X ⊆ E is said to be minimal dependent if any proper
subset of X is independent. A minimal dependent set of matroid
M is called circuit of M.
We denote by C the set of circuits of a matroid.

C is the set of circuits of a matrid on E if and only if C verifies the
following properties :

(C1) ∅ 6∈ C,

(C2) C1,C2 ∈ C and C1 ⊆ C2 then C1 = C2,

(C3) (elimination property) If C1,C2 ∈ C,C1 6= C2 and e ∈ C1 ∩ C2

then there exists C3 ∈ C such that C3 ⊆ {C1 ∪ C2}\{e}.
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Graphic Matroid

Let G = (V ,E ) be a graph. A cycle in G is a closed walk without
repeated vertices.

Theorem The set of cycles in a graph G = (V ,E ) is the set of
circuits of a matroid on E .

This matroid is denoted by M(G ) and called graphic.

Proof : Verify (C1), (C2) and (C3).

A subset of edges I ⊂ {e1, . . . , en} of G is independent if the
graph induced by I does not contain a cycle.
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Graphic Matroid

3e e

e

e

e

2

5

41

It can be checked that M(G ) is isomorphic to M(A) (under the

bijection ei → i).

A =
1 2 3 4 5(
1 0 0 1 1
0 1 0 0 1

)
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Graphic Matroid

Theorem A graphic matroid is always representable over R.

Proof (idea) Let G = (V ,E ) be an oriented graph and let
{xi , i ∈ V } be the canonical base of R|V |.

Exercice : Verify that the graph G = (V ,E ) gives the same
matroid that the one given by the set of vectors ye = xi − xj where
e = (i , j) ∈ E .
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Graphic Matroid

G

a b

c d

1

2 3 4 A =

ya yb yc yd
1 1 0 0
−1 0 1 0

0 −1 −1 1
0 0 0 −1



M(G ) is isomorphic to M(A) (a→ ya, b → yb, c → yc , d → yd).

The cycle formed by the edges a = {1, 2}, b = {1, 3} et c = {2, 3}
in the graph correspond to the linear dependency yb − ya = yc .
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Bases

A base of a matroid is a maximal independent set. We denote by B
the set of all bases of a matroid.

Lemma The bases of a matroid have the same cardinality.

Proof : exercices.

The family B verifies the following conditions :

(B1) B 6= ∅,
(B2) (exchange propety) B1,B2 ∈ B and x ∈ B1\B2 then there

exist y ∈ B2\B1 such that (B1\x) ∪ y ∈ B.

If I is the family of subsets contained in a set of B then (E , I) is a
matroid.
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Bases

Theorem B is the set of basis of a matroid if and only if it verifies
(B1) and (B2).
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Bases

x
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y
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Rank

The rank of a set X ⊆ E is defined by

rM(X ) = max{|Y | : Y ⊆ X ,Y ∈ I}.

r = rM is the rank function of a matroid (E , I) (where

I = {I ⊆ E : r(I ) = |I |}) if and only if r verifies the following
conditions :

(R1) 0 ≤ r(X ) ≤ |X |, for all X ⊆ E ,

(R2) r(X ) ≤ r(Y ), for all X ⊆ Y ,

(R3) (sub-modulairity) r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X ) + r(Y ) for all
X ,Y ⊂ E .
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Rank

Let M be a graphic matroid obtained from G

a b

c d

1

2 3 4

It can be verified that :
rM({a, b, c}) = rM({c , d}) = rM({a, d}) = 2 et
r(M(G )) = rM({a, b, c , d}) = 3.
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Duality

Let M be a matroid on the ground set E and let B the set of bases
of M. Then,

B∗ = {E\B | B ∈ B}

is the set of bases of a matroid on E .

The matroid on E having B∗ as set of bases, denoted by M∗, is
called the dual of M.

A base of M∗ is also called cobase of M.
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Duality

We have that

• r(M∗) = |E | − rM and M∗∗ = M.

• The set I∗ of independents of M∗ is given by

I∗ = {X | X ⊂ E such that there exists B ∈ B(M) with X∩B = ∅}.

• The rank function of M∗ is given by

rM∗(X ) = |X |+ rM(E\X )− rM ,

for X ⊂ E .
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Cocycle Matroid

Let G = (V ,E ) be a graph. A cocycle (or cut) of G is the set of
edges joining the two parts of a partition of the set of vertices of
the graph.

Theorem Let C(G )∗ be the set of minimal (by inclusion) cocycles
of a graph G . Then, C(G )∗ is the set of circuits of a matroid on E .

The matroid obtained on this way is called the matroid of cocycle
of G or bond matroid, denoted by B(G ).
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Bond Matroid

Theorem M∗(G ) = B(G ) and M(G ) = B∗(G ).

1 3

4

2

B(M(G )) = {{4, 1, 3}, {4, 1, 2}, {4, 2, 3}}
B(M∗(G )) = {{2}, {3}, {1}}
I(M∗(G )) = {∅, {1}, {2}, {3}}
The dependents of M∗(G ) are P({1, 2, 3, 4}) \ {∅, {1}, {2}, {3}}
C(M∗(G )) = {{4}, {1, 2}, {1, 3}, {2, 3}} that are precisely the
cocycles of G .
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Planarity

Theorem If G is planar then M∗(G ) = M(G ∗).

1 2

3

4

5
6
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Remark The dual of a graphic matroid is not necessarly graphic.
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Duality - representable matroid

Theorem The dual of a F-representable matroid is F-representable.

Proof. The matrix representing M can always be written as

(Ir | A)

where Ir is the identity r × r and A is a matrix of size r × (n − r).

(Exercise) M∗ can be obtained from the set of columns of the
matrix

(−tA | In−r )

where In−r is the identity (n− r)× (n− r) and tA is the transpose
of A.
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Duality - representable matroid

The matroid M∗ is also called the orthogonal matroid of M since
the duality for representable matroids is a generalization of the
notion of orthogonality in vector spaces.

Let V be a subspace of Fn where n = |E |. We recall that the
orthogonal space V⊥ is defined from the canonical scalar product
〈u, v〉 =

∑
e∈E u(e)v(e) by

V⊥ = {v ∈ Fn | 〈u, v〉 = 0 for any u ∈ V }.

The orthogonal space of the space generated by the columns of
(I | A) is given by the space generated by the columns of
(−tA | In−r ).
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Operation : deletion

Let M be a matroid on the set E and let A ⊂ E . Then,

{X ⊂ E\A | X is independent in M}

is a set of independent of a matroid on E\A.

This matroid is obtained from M by deleting the elements of A
and it is denoted by M\A.
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Matroid theory and Tutte polynomial



Operation : deletion

Let M be a matroid on the set E and let A ⊂ E . Then,

{X ⊂ E\A | X is independent in M}

is a set of independent of a matroid on E\A.

This matroid is obtained from M by deleting the elements of A
and it is denoted by M\A.
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Operation : contraction

Let M be a matroid on the set E and let A ⊂ E .
Let M|A = {X ⊆ A|X ∈ I(M)} and X ⊆ E \ A. Then,

{X ⊆ E\A| there exists a base B of M|A such that X∪B ∈ I(M)}

is the set of independents of a matroid in E \ A.

This matroid is obtained from M by contracting the elements of A
and it is denoted by M/A.
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Operations : deletion and contraction

Properties
(i) (M\A)\A′ = M\(A ∪ A′)
(ii) (M/A)/A′ = M/(A ∪ A′)
(iii) (M\A)/A′ = (M/A′)\A

The operations deletion and contraction are duals, that is,

(M\A)∗ = (M∗)/A and (M/A)∗ = (M∗)\A

and thus M/A = (M∗ \ A)∗

A minor of a matroid of M is any matroid obtained by a sequence
of deletions and contractions.

Question : Is it true that any family of matroids is closed under
deletions/contractions operations ?
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Minors - uniform matroids

The uniform matroid (denoted by Un,r ) is the matroid on E with
|E | = n elements where

B(Un,r ) = {X ⊂ E : |X | = r}

Proposition Any minor of a uniform matroid is uniform.

Proof Deletion : let T ⊆ E with |T | = t. Then,

Un,r\T =

{
Un−t,n−t if n ≥ t ≥ n − r
Un−t,r if t < n − r .

Contraction : it follows by using duality.
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Minors - graphic matroids

Proposition The class of graphic matroids is closed under deletions
and contractions.

(b)
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Contracting element 6
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Minors - representable matroids

Proposition The class of representable matroids over a field F is
closed under deletions and contractions.

Let M be a matroid obtained from the vectors (ve)e∈E of Fd .
Deleting : M \ a is the matroid obtained from the vectors
(ve)e∈E\a
Remark : Lines sums and scalar multiplications do not change the
associated matroid. So, if va 6= 0 then we suppose that va is the
unit vector.
Contracting : M/a is the matroid obtained from the vectors
(v ′e)e∈E\a where v ′e is the vector obtained from ve by deleting the
non zero entry of va.
• If we change the nonzero component we obtain another
representation of M/a.
• If va = 0 then a is a loop of M and thus M/a = M \ a.
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Minors - representable matroids
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Excluded Minors

For any field F, there exists a list of excluded minors, that is,
nonrepresentable matroids over F but any of its proper minors is
representable over F.

Determining the list of excluded minors over F gives a
characterization of the matroids representables over F.

For F = GF (2) = Z2 = Z/2Z (binary matroids) : the list has only
one matroid U2,4 (3 pages proof)

B(U2,4) = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
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Excluded Minors

For F = GF (3) = Z3 = Z/3Z (ternary matroids) : the list has 4
matroids F7 F ∗7 , U2,5 U3,5 (10 pages proof)

For F = GF (4) : the list has 8 matroids explicitly given (50 pages
proof)

Theorem A matroid is graphic if and only if has neither
U2,4,F7,F

∗
7 ,M

∗(K5) = B(K5) nor M∗(K3,3) = B(K3,3) as minors.

Theorem A matroid is cographic if and only if has neither
U2,4,F7,F

∗
7 ,M(K5) nor M(K3,3) as minors.

Theorem A matroid is regular if and only if has neither U2,4, F7 nor
F ∗7 as minors.
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Matroid theory and Tutte polynomial



Excluded Minors

For F = GF (3) = Z3 = Z/3Z (ternary matroids) : the list has 4
matroids F7 F ∗7 , U2,5 U3,5 (10 pages proof)

For F = GF (4) : the list has 8 matroids explicitly given (50 pages
proof)

Theorem A matroid is graphic if and only if has neither
U2,4,F7,F

∗
7 ,M

∗(K5) = B(K5) nor M∗(K3,3) = B(K3,3) as minors.

Theorem A matroid is cographic if and only if has neither
U2,4,F7,F

∗
7 ,M(K5) nor M(K3,3) as minors.

Theorem A matroid is regular if and only if has neither U2,4, F7 nor
F ∗7 as minors.
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Tutte Polynomial

The Tutte polynomial of a matroid M is the generating function
defined as follows

t(M; x , y) =
∑
X⊆E

(x − 1)r(E)−r(X )(y − 1)|X |−r(X ).

Let U2,3 be the matroid of rank 2 on 3 elements with
B(U2,3) = {{1, 2}, {1, 3}, {2, 3}}

t(U2,3; x , y) =
∑

X⊆E , |X |=0

(x − 1)2−0(y − 1)0−0 +
∑

X⊆E , |X |=1

(x − 1)2−1(y − 1)1−1

+
∑

X⊆E , |X |=2

(x − 1)2−2(y − 1)2−2 +
∑

X⊆E , |X |=3

(x − 1)2−2(y − 1)3−2

= (x − 1)2 + 3(x − 1) + 3(1) + y − 1
= x2 − 2x + 1 + 3x − 3 + 3 + y − 1 = x2 + x + y .
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Tutte Polynomial

A loop of a matroid M is a circuit of cardinality one.
An isthmus of M is an element that is contained in all the bases.

The Tutte polynomial can be expressed recursively as follows

t(M; x , y) =


t(M \ e; x , y) + t(M/e; x , y) if e 6= isthmus, loop,
x · t(M \ e; x , y) if e is an isthmus,
y · t(M/e; x , y) if e is a loop.
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Acyclic Orientations

Let G = (V ,E ) be a connected graph. An orientation of G is an
orientation of the edges of G .

We say that the orientation is acyclic if the oriented graph do not
contain an oriented cycle (i.e., a cycle where all its edges are
oriented clockwise or anti-clockwise).

Theorem The number of acyclic orientations of G is equals to

t(M(G ); 2, 0).
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Acyclic Orientations

Example : There are 6 acyclic orientations of C3

Notice that M(C3) is isomorphic to U2,3.

Since t(U2,3; x , y) = x2 + x + y then the number of acyclic
orientations of C3 is t(U2,3; 2, 0) = 22 + 2 + 0 = 6.
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Chromatic Polynomial

Let G = (V ,E ) be a graph and let λ be a positive integer.

A λ-coloring of G is a map φ : V −→ {1, . . . , λ}.

The coloring is called good if for any edge {u, v} ∈ E (G ),
φ(u) 6= φ(v).
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Chromatic Polynomial

Let χ(G , λ) be the number of good λ-colorings of G .

Theorem χ(G , λ) is a polynomial on λ. Moreover

χ(G , λ) =
∑
X⊆E

(−1)|X |λω(G [X ])

where ω(G [X ]) denote the number of connected components of
the subgraph generated by X .

Proof (idea) By using the inclusion-exclusion formula.
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Chromatic Polynomial

The chromatic polynomial has been introduced by Birkhoff as a
tool to attack the 4-color problem.

Indeed, if for a planar graph G we have χ(G , 4) > 0 then G admits
a good 4-coloring.

Theorem If G is a graph with ω(G ) connected components. Then,

χ(G , λ) = λω(G)(−1)|V (G)|−ω(G)t(M(G ); 1− λ, 0).

Exemple : χ(K3, 3) = 31(−1)3−1t(K3; 1− 3, 0)

= 3 · 1 · t(U2,3;−2, 0) = 3((−2)2 − 2 + 0) = 6.
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Ehrhart Polynomial

The theory of Ehrhart focuses in counting the number of points
with integer coordinates lying in a polytope.

A polytope is called integer if all its vertices have integer
coordinates.
Ehrhart studied the function iP that counts the number of integer
points in the polytope P dilated by a factor of t

iP : N −→ N∗
t 7→ |tP ∩ Zd |
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Ehrhart Polynomial

Theorem (Ehrhart) iP is a polynomial on t of degree d ,

iP(t) = cd t
d + cd−1t

d−1 + · · ·+ c1t + c0.

• cd is equals to Vol(P) (the volume of P),

• cd−1 is equals to Vol(∂(P)/2) where ∂(P) is the surface of P,

• c0 = 1 is the Euler’s characteristic of P.

All others coefficients remain a mystery ! !
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Ehrhart Polynomial

The Minkowski’s sum of two sets A and B of Rd is

A + B = {a + b | a ∈ A, b ∈ B}.

Let A = {v1, . . . , vk} be a finite set of elements of Rd .

A zonotope generated by A, denoted by Z (A), is a polytope
formed by the Minkowski’s sum of line segments

Z (A) = {α1 + · · ·+ αk |αi ∈ [−vi , vi ]}.
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Ehrhart Polynomial
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Ehrhart Polynomial

Permutahedron
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Ehrhart Polynomial

A matroid is regular if it is representable over any field.

Theorem Let M be a regular matroid and let A be one of its
representation matrix. Then, the Ehrhart polynomial associated to
the zonotope Z (A) is given by

iZ(A)(q) = qr(M)t

(
M; 1 +

1

q
, 1

)
.
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Knots
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Knots

Reidemeister moves
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Knots
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Knots

Bracket polynomial

For any link diagram D define a Laurent polynomial < D > in one
variable A which obeys the following three rules where U denotes
the unknot :
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Knots

Theorem For any link L the bracket polynomial is independent of
the order in which rules (i)− (iii) are applied to the crossings.
Further, it is invariant under the Reidemeister moves II and III

but it is not invariant under Reidemeister move I ! !

The writhe of an oriented link diagram D is the sum of the signs
at the crossings of D (denoted by ω(D)).
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but it is not invariant under Reidemeister move I ! !

The writhe of an oriented link diagram D is the sum of the signs
at the crossings of D (denoted by ω(D)).
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Knots

(D)=1
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!

!

!"

!
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Knots

Theorem For any link L define the Laurent polynomial

fD(A) = (−A3)ω(D) < L >

Then, fD(A) is an invariant of ambient isotopy.

Now, define for any link L

VL(z) = fD(z−1/4)

where D is any diagram representing L. Then VL(z) is the Jones
polynomial of the oriented link L.
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Knots
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Knots

C
A

B
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Knots
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Knots
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Knots

A link diagram is alternating if the crossings alternate
under-over-under-over ... as the link is traversed.

A link is alternating if there is an alternating link diagram
representing L.

Theorem (Thistlethwaite 1987) If D is an oriented alternating link
diagram then

VL(z) = (z−1/4)3ω(D)−2t(M(G );−z ,−z−1)

where G is the graph associated to the knot diagram.
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More applications

• Code theory

• Flow polynomial

• Bicycle space of a graph

• Statistical mechanics

• Arrangements of hyperplanes
...
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